Flavored gauge symmetry in SUSY

as origin of a discrete symmetry

(work in progress)

Hye-Sung Lee BNL

Brookhaven Forum 2010

Discrete symmetry (Z_N) from a gauged U(1) in SUSY Typical example:

$$U(1)_{B-L} \rightarrow R_2$$
 (R-parity; Z_2)

Our model:

$$U(1)_{B-x_iL} \rightarrow B_3$$
 (Baryon triality; Z_3)

 $(x_i = \text{family-dependent values})$

Remark:

It is a follow-up of the " $U(1)_{B-x_iL} \rightarrow R_2$ " paper [HL, Ma (2010)].

Outline

1. Model: Minimal U(1)-extended SUSY model with B_{3}

2. LHC Implications: Flavor-sensitive signals

3. Summary

Model

BF 2010 Hye-Sung Lee

Flavored gauge symmetry in SUSY

B_3 (baryon triality)

 Z_3 symmetry suggested by Ibanez and Ross (1992) to avoid dim 5 proton decay operators (QQQL, $U^cU^cD^cE^c$) allowed in R-parity

Field	Q	U^c	D^c	L	N^c	E^c	H_u	H_d	meaning
$B_{ m 3}$ charge	0	1	-1	1	0	1	-1	1	$-B + 2Y \mod 3$

Selection rule (for any operator) : $\Delta B = 3 \times \text{integer}$

(1) B : violated only by $3 \times$ integer.

(2) L : violated freely (λLLE^c , $\lambda'LQD^c$, $\mu'LH_u$ are allowed).

Proton decay ($\Delta B = 1$) is forbidden.

Goal

Construct a TeV-scale U(1)-extended SUSY model (w/o R-parity)

with (i)
$$U(1) \rightarrow B_3$$

(ii) minimal particle contents

- (i) B_3 (baryon triality)
- Alternative Z_N to R-parity for proton stability
- (ii) Minimal particle contents (same as minimal $U(1)_{B-L}$)
- Spectrum: MSSM + 3 RH ν + Z' + S_1 , S_2 (anomaly-free)
 - ightarrow U(1) charges should be family-dependent.

Additional U(1) gauge symmetry

Facts:

- 1. $U(1)_{B-L}$ is the only anomaly-free U(1) unless exotic fields are added. (Caveat: true only for family-independent charges)
- 2. $U(1)_{B-L}$ cannot have B_3 as a remnant discrete symmetry (see later).

We generalize it to $U(1)_{B-x_iL}$. (No exotic fields are added.)

U(1) charge	1st	2nd	3rd	
$z[Q] = -z[U^c] = -z[D^c]$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	family-independent
$z[L] = -z[N^c] = -z[E^c]$	$-x_1$	$-x_2$	$-x_3$	family-dependent
$z[H_u] = -z[H_d]$	0			
$z[S_1] = -z[S_2]$?			to be determined

Flavored gauge symmetry in SUSY

What we need to show about $U(1)_{B-x_i L}$

- 1. It is anomaly-free
- 2. It has B_3 as a remnant discrete symmetry

Condition for anomaly-free $U(1)_{B-x_iL}$

[Ex]
$$SU(2)_L$$
 - $SU(2)_L$ - $U(1)_{B-x_iL}$ anomaly

(z: U(1) charge)

$$A_{2-2-1'}$$
= $N_C \times (3 \times z[Q]) + (z[L_1] + z[L_2] + z[L_3]) + (z[H_u] + z[H_d])$
= $N_C \times (3 \times 1/3) + (-x_1 - x_2 - x_3) + (0 + 0)$
= 0

Anomaly-free condition :
$$x_1 + x_2 + x_3 = 3$$
 (1)

(With this, all anomaly conditions are satisfied.)

Family-independent case ($x_1 = x_2 = x_3$): $x_i = 1$ only ($U(1)_{B-L}$)

Remnant Z_N from a U(1) gauge symmetry

As U(1) is spontaneously broken by $\langle S \rangle$, it leaves Z_N as a remnant.

$$U(1) \rightarrow Z_N$$

Relation between U(1) and Z_N :

With integer U(1) charges (by hypercharge shift and normalization),

(i)
$$N = |z[S]|$$
 (G.C.D. for multiple S)

(ii)
$$q[\text{field}] = z[\text{field}] \mod N$$

Condition for $U(1)_{B-x_iL} \to B_3$

	$B-x_iL$	6Y	$(B-x_iL)-2Y$	Z_3	B_3
Q	1/3	1	0	0	0
U^c	-1/3	-4	1	1	1
D^c	-1/3	2	-1	-1	-1
L_i	$-x_i$	-3	$1-x_i$	$1 - x_i \mod 3$	1
N_i^c	x_i	0	x_i	$x_i \bmod 3$	0
E_i^c	x_i	6	$x_i - 2$	$1 + x_i \mod 3$	1
H_u	0	3	-1	-1	-1
H_d	0	-3	1	1	1
S_1	$z[S_1]$	0	$z[S_1]$		
S_2	$-z[S_1]$	0	$-z[S_1]$		

$$Z_3$$
 condition : $z[S_1] = -z[S_2] = 3$ (2)

$$B_3$$
 condition : $x_i = 3 \times \text{integer}$ (3)

Clearly, no solution for B_3 with family-independent charges ($x_i = 1$).

Family-dependent solutions exist.

$$x_i = (-3, 6, 0), (3, 0, 0), (9, -3, -3), \cdots$$

: Anomaly-free $U(1)_{B-x_iL}$ models with residual B_3 (w/o R-parity)

Caveat: It is possible to have B_3 with family-independent U(1) charges for the MSSM sector, if we allow exotic fields [HL, Luhn, Matchev (2008)].

Constraints that we still need to work out

- Neutrino sector
 - : complicated due to family-dependent charges and additional contributions (λ , λ' , μ' , etc)
- Collider limits on Z' gauge boson
 - : Tevatron dilepton search, LEP contact interaction limit ($e \bar{e}
 ightarrow \ell \bar{\ell}$)
- Etc.

(This talk is about *preliminary* work.)

Flavor-sensitive LHC implications

- (1) Dilepton Z' resonance
- (2) Dilepton $\widetilde{\nu}$ resonance
- (3) Complementarity between $\widetilde{\nu}$ and Z' resonances

BF 2010

(1) Dilepton Z^{\prime} resonance at the LHC

: direct consequence of any gauged U(1)

 Z^{\prime} couplings to leptons are flavor-sensitive.

$${\rm Br}(Z' \to e^+ e^-) : {\rm Br}(Z' \to \mu^+ \mu^-) = x_1^2 : x_2^2$$

First Z^{\prime} discovery may depend on which flavor you are looking.

[Ex] For
$$x_i=(-3,6,0)$$
,
$$(Z'\to e^+e^- \text{ events}): (Z'\to \mu^+\mu^- \text{ events})=1:4$$

(2) Dilepton $\widetilde{\nu}$ LSP resonance at the LHC

: typical SUSY search channel (in the absence of R-parity)

Production: $\lambda'_{ijk}L_iQ_jD_k^c$ requires 0 charge for $\widetilde{\nu}_i$. $(z[L_i] + \frac{1}{3} - \frac{1}{3} = 0)$

Decay: $\lambda_{ijk}L_iL_jE_k^c$ requires same charges for ℓ_j and ℓ_k . $(0+z[L_j]+z[E_k^c]=0)$

Unlike usual models, some $\widetilde{\nu}$ resonances may be forbidden.

[Ex] For $x_i = (-3, 6, 0)$ with $\widetilde{\nu}_{\tau}$ LSP,

Diagonal resonance: $\widetilde{\nu} \to e^+e^- (\lambda_{311}), \ \mu^+\mu^- (\lambda_{322})$ are allowed.

Off-diagonal resonance: $\widetilde{\nu} \to e^+\mu^- (\lambda_{312})$ is forbidden.

(3) Complementarity between $\widetilde{\nu}$ and Z' (di- $\widetilde{\nu}$) resonances at the LHC

If $z[\widetilde{\nu}] \neq 0$, 2-lepton $\widetilde{\nu}$ LSP resonance is forbidden.

How can we see SUSY signal in this case?

It will guarantee $\widetilde{\nu}$ LSP coupling to Z' instead. (\rightarrow 4-lepton Z' resonance)

2-lepton $\widetilde{\nu}$ resonance and 4-lepton Z' resonance are complementary in SUSY search.

Summary

BF 2010 Hye-Sung Lee

Summary

1. U(1) for absolute proton stability requires family-dependent charges.

$$U(1)_{B-x_iL} \rightarrow B_3$$

(Caveat: R-parity is OK. Other physics can address dim 5 operators.)

- 2. This implies flavor-sensitive LHC signals.
 - (1) Z' discovery reach ($Z' \rightarrow \ell \ell$) may depend on lepton flavor.
 - (2) $\widetilde{\nu}$ resonance ($\widetilde{\nu} \to 2\ell$) may not have off-diagonal resonances.
 - (3) 2-lepton $(\widetilde{\nu} \to 2\ell)$ and 4-lepton $(Z' \to 2\widetilde{\nu} \to 4\ell)$ resonances are complementary in searching for the $\widetilde{\nu}$ LSP (SUSY signal).

Connection between "Proton stability" & "Flavor physics" in SUSY

Backup slides

BF 2010 Hye-Sung Lee

Proton decay

[Dim 4 L violation & Dim 4 B violation]

$$\lambda LLE^c + \lambda' LQD^c \& \lambda'' U^c D^c D^c$$

[Dim 5 B&L violation] $\frac{\eta_1}{M} QQQL + \frac{\eta_2}{M} U^c U^c D^c E^c$

To satisfy $\tau_p \gtrsim 10^{29}$ years,

Dim 4: $|\lambda_{LV} \cdot \lambda_{BV}| \lesssim 10^{-27}$ (if one is 0, the other can be sizable)

Dim 5: $|\eta| \lesssim 10^{-7} \; (\text{for } M = M_{Pl}) \; [\text{Weinberg (1982)}]$

$Z^\prime\text{-mediated FCNC}$ in lepton sector?

Assume family-dependent U(1) charges.

$$\begin{array}{lll} \textit{(Z'-fermion-fermion interaction)} & = & \bar{\psi}_L \gamma_\mu Q_L \psi_L \\ & = & \bar{\psi}_L V_L^\dagger V_L \gamma_\mu Q_L V_L^\dagger V_L \psi_L \\ & = & \bar{\psi}_L' \gamma_\mu Q_L' \psi_L' \end{array}$$

$$Q_{L} = \begin{pmatrix} a & & & \\ & b & \\ & & c \end{pmatrix} \rightarrow Q'_{L} = \begin{pmatrix} d & (\#) & (\#) \\ (\#) & e & (\#) \\ (\#) & (\#) & f \end{pmatrix}$$

FCNC can occur if $V_L \neq 1$.

Flavored gauge symmetry in SUSY

$$\begin{array}{ll} \text{(fermion mass)} & = & \bar{\psi}_L m \psi_R \\ & = & \bar{\psi}_L V_L^\dagger \underline{V}_L m V_R^\dagger \underline{V}_R \psi_R \\ & = & \bar{\psi}_L' m' \psi_R' \end{array}$$

$$m = \begin{pmatrix} m_{11} & (m_{12}) & (m_{13}) \\ (m_{21}) & m_{22} & (m_{23}) \\ (m_{31}) & (m_{32}) & m_{33} \end{pmatrix} \rightarrow m' = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$$

If U(1) charges are all different for each family,

$$\rightarrow$$
 off-diagonal $m_{ij}=0$ (for $i \neq j$)

$$\rightarrow V_L = 1$$
, $V_R = 1$

(If $x_1 \neq x_2 = x_3$, then m_{23} , $m_{32} \approx 0$ is needed for $V_L \approx V_R \approx 1$.)

$$U(1)_{B-x_iL}
ightarrow R_2 \;\; ext{[HL, Ma (2010)]}$$

 $U(1)_{B-L}$ is not the only possible gauge origin of R-parity.

It is possible to have a family-dependent gauge origin of R-parity.

Then $U(1)_{B-x_iL}$ can help with dim 5 p-decay operators issue.

$$z[QQQL_i] = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - x_i = 1 - x_i$$

$$z[U^cU^cD^cE_i^c] = -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} + x_i = -1 + x_i$$

As long as $x_i \neq 1$, dim 5 p-decay operators are forbidden.

Again, connection between the "proton stability" & "flavor physics".

Why TeV scale Z'?

$$\delta m_H^2(\mathsf{top} + \mathsf{stop}) \approx (-\Lambda^2 + \cdots) + (\Lambda^2 + \cdots)$$

 $\approx -m_{\tilde{t}}^2 \log(\Lambda/m_{\tilde{t}}) + \cdots$

D-term contribution to scalar masses:

$$\Delta m_{\tilde{f}_R}^2 = (\frac{2}{3}\sin^2\theta_W\cos 2\beta) M_Z^2 + (z[f]z[S]) M_{Z'}^2$$

If $M_{Z'}\gg 100~{\rm GeV}\to m_{\tilde f}\gg 100~{\rm GeV}\to$ Gauge hierarchy problem comes back.

Z' should be $O(100~{\rm GeV}) \sim O(1~{\rm TeV})$ in SUSY.

How about dark matter?

Without R-parity, the LSP is not a good DM candidate any more.

Add some hidden sector fields (SM singlets) as DM candidate, which interact with the SM only through U(1).

$$U(1) \rightarrow Z_N^{\text{total}} = Z_n^{\text{MSSM}} \times Z_m^{\text{hidden}}$$

with
$$Z_n^{
m MSSM}=B_3$$
 (for proton) , $Z_m^{
m hidden}=U_2$ (for DM).

(This was studied in the family-independent charge case [HL (2008)].)

Lightest U-parity Particle (LUP) can satisfy relic density and direct detection constraints.

New channels: LUP + LUP → SUSY + SUSY

(LSP + LSP \rightarrow SUSY + SUSY is not allowed unless $m_{NLSP} \approx m_{LSP}$).